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This work deals with the computation of transient electromagnetic fields in magnetic media with hysteresis. The classical Preisach
model for hysteresis is considered. We assume axisymmetry of thefields. The magnetic field on the boundary of the domain is given as
a source term. For the numerical solution, a space discretization by nodal finite elements and a backward Euler time-discretization are
used. To deal with the non-linearities, we propose an iterative algorithm based on the properties of maximal monotone operators. The
numerical scheme is validated with experimental results. In particular, we compare the eddy current and hysteresis losses obtained
from the numerical computations with experimental ones.
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I. I NTRODUCTION

I T is widely known that the performance of electric machines
is mainly defined by the power losses. These losses include

iron losses that are due to the magnetic field variations in the
ferromagnetic materials composing the core of the machine.
The efficiency, the thermal behavior and the compactness are
some of the design constraints which are strongly influenced
by the losses. Consequently, it is very important to predict
them accurately for an optimum design of the device [2].
The iron losses can be divided into three main components:
classical, hysteresis and excess losses, which are relatedto
the intrinsic nature of magnetic materials. In the literature
there are numerous publications devoted to obtain analytical
simplified expressions to approximate the different components
of these losses. These expressions are only valid under certain
assumptions that do not hold in many practical situations.
Numerical simulation is an interesting alternative in order
to overcome these limitations and thus, in the last years,
we can find several works focusing on this approach (see,
for instance [1], [3]). The first step towards this end is the
numerical solution of the underlying electromagnetic problem,
which is the aim of this work.

II. T RANSIENT EDDY CURRENT MODEL WITH HYSTERESIS

Eddy currents problems are modeled by the well known
quasi-static Maxwell’s equations. In many applications the
computational 3D domain has cylindrical symmetry and all
fields are independent of the angular variable. In such a case,
in order to reduce the dimension and thereby the computational
effort, it is convenient to consider a cylindrical coordinate
system(r, θ, z) as shown in Fig. 1 and to write the magnetic
field and the magnetic induction asH(r, z, t) = H(r, z, t)eθ
and B(r, z, t) = B(r, z, t)eθ, respectively. In such a case,
taking into account the symmetry assumption and Ohm’s law,
Maxwell’s equations can be written in terms ofH as follows:
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Fig. 1. Cylindrical coordinate system (left) and sketch of the domain (right).

where σ is the electrical conductivity of the material. This
equation holds in a meridian sectionΩ of a 3D domain (see
Fig. 1), for all timet ∈ [0, T ].

In ferromagnetic materials, where hysteresis phenomena
may occur, the relation betweenB andH exhibits a history-
dependent behavior and must be represented by a suitable
scalar constitutive law accounting for hysteresis. We have
chosen the well-knownclassical Preisach model(see [4]), in
which the hysteresis operator is defined by

F(H, ξ)(r, z, t) :=

∫∫

α≤β

Rαβ(H(r, z, t), ξ(r, z))µ(α, β) dα dβ,

whereµ is a distribution function with compact support that
identifies the ferromagnetic material,ξ contains the information
about the “initial state” of magnetization at each point (includ-
ing eventually its history) andRαβ is the relay function. Thus,
we can write

B = F(H, ξ).

To state a well-posed problem, we consider the following initial
and boundary conditions

B(·, 0) = B
0 in Ω, H = g on ∂Ω× (0, T ),

respectively, whereB0 andg are given data. For applications
of this model, we refer for instance to [5].

By using nodal finite elements for space discretization and
a backward Euler scheme for time discretization, we are led



to the following discrete scheme:
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where∆t :=T/m, gnh is a convenient approximations ofg(tn),
andBn, n = 1, . . . ,m, is such that, given an initial stateξ,

Bn(Hn
h )(r, z) := F(H∆t

h , ξ)(r, z, tn), (r, z) ∈ Ω,

with H∆t
h being the piecewise linear time-interpolant such that

H
∆t
h (r, z, tl) = H

l
h(r, z), (r, z) ∈ Ω, l = 0, . . . , n.

Different algorithms have been proposed to approximate
the non-linear equation with hysteresis (see, for instance,
[1]). Here, we propose an iterative fixed point type algorithm
presented in [6], which is based on the properties of maximal
monotone operators and their Yosida regularization. Thus,the
previous problem can be reformulated as follows:
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where B
n,β
λ (G) is the so-called Yosida regularization of

Bn,β(G) := Bn(G) − βG andλ andβ are real numbers that
have to be chosen such that0 < λβ ≤ 1/2.

At each iteration of the fixed point algorithm,qnh has to be
updated at particular integration points inΩ. This is done by
solving a scalar non-linear equation for each point. Thus, at
each iteration step, we have to solve a linear system and one
scalar nonlinear equation per integration point. An interesting
feature of the proposed algorithm is that, in cases whereσ is
time independent and the same at all iteration steps, the matrix
associated to the linear problem is always the same and thus
can be assembled (and eventually factorized) only once before
the time step loop.

III. N UMERICAL EXAMPLE

To assess the validity of the proposed numerical approach
we have solved the above problem with source terms obtained
from physical measurements done on an Epstein frame con-
sidering a material sheet of thickness 0.5 mm, width 30 mm,
and electrical conductivity 4064777 (Ohm/m)−1, subjected to
a sinusoidal flux excitation with frequenciesf and induction
peak levelsBm specified in Table I. For each of these values,
the physical measurements were the magnetic field on the
boundary of the sheet and the total electromagnetic losses per
cycle and per unit volume. To simulate the experimental setting
with our axisymmetric model, we considered a rectangular

domainΩ = [R1, R2] × [0, d] with R1 = 100, R2 = 100.03
and d = 0.0005 (meters). Then, we numerically compute the
total electromagnetic losses by summing up the eddy current
(LE) and hysteresis losses (LH ),
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and we compare them with the total measured losses. The
results are summarized on Table I.

TABLE I
TOTAL LOSSES(J/m3)

f (Hz) Bm(T) LE LH Total (exp.) Relative error(%)
25 0.5 9.9144 126.2274 121.2594 12.2732

0.9 32.7726 269.4965 300.2454 0.6740
1.4 91.3716 585.7265 638.9281 5.9741

150 0.5 48.2460 146.0968 167.5503 15.9907
0.9 178.5306 282.2810 459.1568 0.3603
1.4 506.3943 588.1854 1090.178 0.4037
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Fig. 2. Comparison between the numerically computed and the measured
hysteresis loops.

IV. CONCLUSIONS

The results summarized on Table I show a good agreement
between the numerical and experimental results. The largest
discrepancy is observed for small values of the peak values,
which is consistent with the fact that the inner hysteresis loops
are worse approximated than the exterior ones (see Fig. 2).
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[6] A. Bermúdez and C. Moreno, “Duality methods for solving variational
inequalities,”Comput. Math. Appl., vol. 7, pp. 43-58, 1981.


	Introduction
	Transient eddy current model with hysteresis
	Numerical Example
	Conclusions
	References

