Numerical computation of electromagnetic fields in axisymmic
laminated media with hysteresis

Alfredo BernmiideZ, Luc Dup®?, Dolores GmeZ, Rodolfo RodigueZ, and Pablo Venegés

1Departamento de Mateatica Aplicada, Universidade de Santiago de Compostel@8825antiago de Compostela, Spain
2Department of Electrical Energy, Systems and Automatidmer@® University, B-9052 Ghent, Belgium
3CI2MA and Departamento de IngeriarMatenatica, Universidad de Concepai, Casilla 160-C, Concepmi, Chile
4Department of Mathematics, University of Maryland, Co#iegark, MD 20742, USA

This work deals with the computation of transient electromagnetic félds in magnetic media with hysteresis. The classical Preisach
model for hysteresis is considered. We assume axisymmetry of tffields. The magnetic field on the boundary of the domain is given as
a source term. For the numerical solution, a space discretizationypnodal finite elements and a backward Euler time-discretization are
used. To deal with the non-linearities, we propose an iterative algihm based on the properties of maximal monotone operators. Tk
numerical scheme is validated with experimental results. In particlar, we compare the eddy current and hysteresis losses obtained
from the numerical computations with experimental ones.

Index Terms—Eddy currents, nonlinear magnetics, magnetic hysteresis, magtic losses.

I. INTRODUCTION

T is widely known that the performance of electric machines

is mainly defined by the power losses. These losses include
iron losses that are due to the magnetic field variations én th
ferromagnetic materials composing the core of the machine.
The efficiency, the thermal behavior and the compactness are
some of the design constraints which are strongly influenced
by the losses. Consequently, it is very important to predict
them accurately for an optimum design of the device [2].
The iron losses can be divided into three main componengg; 1. cylindrical coordinate system (left) and sketch e tiomain (right).
classical, hysteresis and excess losses, which are related
the intrinsic nature of magnetic materials. In the literatu
there are numerous publications devoted to obtain analyti®vhere o is the electrical conductivity of the material. This
simplified expressions to approximate the different congmos €quation holds in a meridian sectiéhof a 3D domain (see

of these losses. These expressions are only valid undaircerfig- ), for all timet € [0, 77.

: : : - In ferromagnetic materials, where hysteresis phenomena
assumptions that do not hold in many practical S|tuat|onrsﬁay oceur, the relation betwee and H exhibits a history-

Numerical simulation is an interesting alternative in “’rdeﬁependent behavior and must be represented by a suitable
to overcome these limitations and thus, in the last yeakgalar constitutive law accounting for hysteresis. We have
we can find several works focusing on this approach (se#josen the well-knowrlassical Preisach moddkee [[4]), in

for instance [[L], [[8]). The first step towards this end is thwhich the hysteresis operator is defined by

numerical solution of the underlying electromagnetic feah

which is the aim of this work. F(H,&)(r,2,1) = / QSBRaB(H(T:th)@(T: z)) u(ev, B) dacdp,
where . is a distribution function with compact support that

Il. TRANSIENT EDDY CURRENT MODEL WITH HYSTERESIS identifies the ferromagnetic materiglcontains the information

Eddy currents problems are modeled by the well knowaPout the “initial state” of magnetization at each pointlini-
quasi-static Maxwell's equations. In many applicationg tHng eventually its history) an® s is the relay function. Thus,
computational 3D domain has cylindrical symmetry and &y can write
fields are independent of the angular variable. In such a case B = F(H,§).
in order to reduce the dimension and thereby the computio, giate 4 well-posed problem, we consider the followingahi
effort, it is convenient to consider a cylindrical coordima i

) L9 ; .and boundary conditions
system(r, 6, z) as shown in Figl]l and to write the magnetic
field and the magnetic induction &%(r, z,t) = H(r, z,t)ey B(-,0) =B inQ, H=g ondQ x (0,T),
and B(r,z,t) = B(r,z,t)ey, respectively. In such a case, _ ) o
taking into account the symmetry assumption and Ohm’s latgspectively, where3® and g are given data. For applications
Maxwell's equations can be written in terms Hf as follows: of this model, we refer for instance tol [5].

OB & ( 1 8(rH)> ) <1 8H> By using nodal finite elements for space discretization and

5t ar \or or “ 9.\ 582 a backward Euler scheme for time discretization, we are led



to the following discrete scheme: domain) = [Ry, R2] x [0,d] with Ry = 100, Ry = 100.03
andd = 0.0005 (meters). Then, we numerically compute the

Given BY, find By and H}*, n = 1,...,m, such that total electromagnetic losses by summing up the eddy current
(Lg) and hysteresis losse& f),
BrGor drds +/ At [8(7’H}f) A(rGp) n A(rH}) 0(rGy) . )
T h ;
o h Q0" or or 0z 0z Ly = v / Qﬂ/ MT drdz| dt y ,
md(R3 — R?) 0 Q g
= [ By 'Gurdrdz VYGp: Gy =00ndQ, 1 T 5B
) Q . LH ::ﬁ{Zﬂ'/ |: —htht}rdrdz},
By (r,z) = B"(Hp)(r,z) in Q, wd(R3 — R?) olJo Ot
Hy =g onoQ, and we compare them with the total measured losses. The

results are summarized on Table |I.

whereAt:=T/m, g; is a convenient approximations gft"),
andB™, n =1,...,m, is such that, given an initial state TABLE |

N TOTAL LOSSES(J/m3)
B"(Hy)(r,z) == F(Hp ', &)(r,2,t"), (r,z) €,

. . . . . . . J(Hz) Bm(T) Lg Ly Total (exp.) Relative error(%)
with H being the piecewise linear time-interpolant such that™—3s 05 99144 1262274 1210594 122732
At . . 0.9 327726 269.4965 300.2454 0.6740
Hy"(r,z, 1) = Hy(r,z), (r,z)€Q, 1=0,...,n 14  91.3716 585.7265 638.9281 5.9741
. . , 150 0.5  48.2460 146.0968 167.5503 15.9907
Different algorithms have been proposed to approximate 0.9 1785306 282.2810 459.1568 0.3603
the non-linear equation with hysteresis (see, for instance 1.4  506.3943 588.1854 1090.178 0.4037

[1]). Here, we propose an iterative fixed point type alganith
presented in[[6], which is based on the properties of maximal
monotone operators and their Yosida regularization. Tthes,
previous problem can be reformulated as follows:

o

£
Given BY, find H» and¢}’, n = 1,...,m, such that @ ol
H7L HTL ‘§
/ﬁHﬁ'Ghr drdz —l—/ At [9(rHE) 9(rGn) + O(rHj’) O(rGin) g
Q Qon™r or or 0z 0z S
T -05]
+ /q;thr drdz = /B,’;—l(;hr drdz YGp: Gy =0 onds, g;
Q Q

ah = BYP(HR + Aqi}) in Q, s

n n =500 ’4(‘)0 ’360 ’260 ’1(‘]0 6 160 260 360 460 5‘00
Hy =g, onoQ, Magnetic field H (A/m)

n,B . . . . Fig. 2. Comparison between the numerically computed and the urezhs
where By"”(G) is the so-called Yosida regularization ofhysteresis loops.
by ) p

B"8(G) := B*(G) — BG and A and 3 are real numbers that
have to be chosen such thak A\g < 1/2.

At each iteration of the fixed point algorithrg; has to be IV. CONCLUSIONS
“pd".’“ed at particular |.ntegrat|on pomtsﬁn This is _done by The results summarized on Taljle | show a good agreement
solving a scalar non-linear equation for each point. Thas, a . )

; . : pbetween the numerical and experimental results. The larges
each iteration step, we have to solve a linear system and e .
. . ) . ) . iscrepancy is observed for small values of the peak values,
scalar nonlinear equation per integration point. An irgéng

feature of the proposed algorithm is that, in cases wheie which is consistent with the fact that the inner hysteresipé

time independent and the same at all iteration steps, thexmaf ¢ VOrse approximated than the exterior ones (seeLFig. 2).

associated to the linear problem is always the same and thus
can be assembled (and eventually factorized) only oncadefo
the time step |OOp. [1] R. Van Keer, L. Dupe, and J. A. A. Melkebeek, “On a numerical method
for 2D magnetic field computations in a lamination with enford¢ethl
flux,” J. Comput. Appl. Math.vol. 72, pp. 179-191, 1996.
1. NUMERICAL EXAMPLE [2] E. Dlala, A. Belahcen, and A. Arkkio “On the importance otorporating
idi i iron losses in the magnetic field solution of electrical maesjhIEEE
To assess the validity of the proposed numerical approach Trans. Magn, vol. 46. o, 8, pp. 31013104 Aug. 2010,
we have solved the above problem with source terms obtalrl)%dK Preis, O. Biro, and |, Ticar, “FEM analysis of eddy cemt losses
fr.om .phyS|CaI measuremems (.jone on an EpSte'U frame c “in nonlinear laminated iron cores|EEE Trans. Magn.vol. 41, no. 5,
sidering a material sheet of thickness 0.5 mm, width 30 mm, .
. ct ' pp. 1412-1415, May 2005.
and electrical conductivity 4064777 (Ohm/m) subjected t0 [4] I. D. Mayergoyz, Mathematical Models of Hysteresigst ed., New York:
a sinusoidal flux excitation with frequencigsand induction Springer-Verlag, 1991.
peak levelsB,, specified in Tabl€]l. For each of these valueg5] M. Markovic and Y. Perriard, “Eddy current power lossesa toroidal
the physical measurements were the magnetic field on the laminated core with rectangular cross section,Piroc. Int. Conf. Elec-
boundary of the sheet and the total electromagnetic losses p  trical Machines and Systems (ICEMS 2008p. 1-4, 2009. o
cycle and per unit volume. To simulate the experimentalmytt 6] A. Bermudez and C. Moreno, “Duality methods for solving variational
with our axisymmetric model, we considered a rectangular '"edualites’Comput. Math. Appl.vol. 7, pp. 43-58, 1981.
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